Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa.

Identifieur interne : 000265 ( Main/Exploration ); précédent : 000264; suivant : 000266

Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa.

Auteurs : Megan L. Matthews [États-Unis] ; Jack P. Wang [République populaire de Chine, États-Unis] ; Ronald Sederoff [États-Unis] ; Vincent L. Chiang [République populaire de Chine, États-Unis] ; Cranos M. Williams [États-Unis]

Source :

RBID : pubmed:32275650

Descripteurs français

English descriptors

Abstract

Accurate manipulation of metabolites in monolignol biosynthesis is a key step for controlling lignin content, structure, and other wood properties important to the bioenergy and biomaterial industries. A crucial component of this strategy is predicting how single and combinatorial knockdowns of monolignol specific gene transcripts influence the abundance of monolignol proteins, which are the driving mechanisms of monolignol biosynthesis. Computational models have been developed to estimate protein abundances from transcript perturbations of monolignol specific genes. The accuracy of these models, however, is hindered by their inability to capture indirect regulatory influences on other pathway genes. Here, we examine the manifestation of these indirect influences on transgenic transcript and protein abundances, identifying putative indirect regulatory influences that occur when one or more specific monolignol pathway genes are perturbed. We created a computational model using sparse maximum likelihood to estimate the resulting monolignol transcript and protein abundances in transgenic Populus trichocarpa based on targeted knockdowns of specific monolignol genes. Using in-silico simulations of this model and root mean square error, we showed that our model more accurately estimated transcript and protein abundances, in comparison to previous models, when individual and families of monolignol genes were perturbed. We leveraged insight from the inferred network structure obtained from our model to identify potential genes, including PtrHCT, PtrCAD, and Ptr4CL, involved in post-transcriptional and/or post-translational regulation. Our model provides a useful computational tool for exploring the cascaded impact of single and combinatorial modifications of monolignol specific genes on lignin and other wood properties.

DOI: 10.1371/journal.pcbi.1007197
PubMed: 32275650
PubMed Central: PMC7147730


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa.</title>
<author>
<name sortKey="Matthews, Megan L" sort="Matthews, Megan L" uniqKey="Matthews M" first="Megan L" last="Matthews">Megan L. Matthews</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald" sort="Sederoff, Ronald" uniqKey="Sederoff R" first="Ronald" last="Sederoff">Ronald Sederoff</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Cranos M" sort="Williams, Cranos M" uniqKey="Williams C" first="Cranos M" last="Williams">Cranos M. Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32275650</idno>
<idno type="pmid">32275650</idno>
<idno type="doi">10.1371/journal.pcbi.1007197</idno>
<idno type="pmc">PMC7147730</idno>
<idno type="wicri:Area/Main/Corpus">000353</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000353</idno>
<idno type="wicri:Area/Main/Curation">000353</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000353</idno>
<idno type="wicri:Area/Main/Exploration">000353</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa.</title>
<author>
<name sortKey="Matthews, Megan L" sort="Matthews, Megan L" uniqKey="Matthews M" first="Megan L" last="Matthews">Megan L. Matthews</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald" sort="Sederoff, Ronald" uniqKey="Sederoff R" first="Ronald" last="Sederoff">Ronald Sederoff</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Cranos M" sort="Williams, Cranos M" uniqKey="Williams C" first="Cranos M" last="Williams">Cranos M. Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (methods)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Gene Knockdown Techniques (methods)</term>
<term>Lignin (biosynthesis)</term>
<term>Lignin (genetics)</term>
<term>Lignin (metabolism)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Populus (genetics)</term>
<term>Wood (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie informatique (méthodes)</term>
<term>Bois (génétique)</term>
<term>Lignine (biosynthèse)</term>
<term>Lignine (génétique)</term>
<term>Lignine (métabolisme)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Techniques de knock-down de gènes (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Lignin</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bois</term>
<term>Lignine</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Gene Knockdown Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
<term>Techniques de knock-down de gènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Theoretical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles théoriques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Accurate manipulation of metabolites in monolignol biosynthesis is a key step for controlling lignin content, structure, and other wood properties important to the bioenergy and biomaterial industries. A crucial component of this strategy is predicting how single and combinatorial knockdowns of monolignol specific gene transcripts influence the abundance of monolignol proteins, which are the driving mechanisms of monolignol biosynthesis. Computational models have been developed to estimate protein abundances from transcript perturbations of monolignol specific genes. The accuracy of these models, however, is hindered by their inability to capture indirect regulatory influences on other pathway genes. Here, we examine the manifestation of these indirect influences on transgenic transcript and protein abundances, identifying putative indirect regulatory influences that occur when one or more specific monolignol pathway genes are perturbed. We created a computational model using sparse maximum likelihood to estimate the resulting monolignol transcript and protein abundances in transgenic Populus trichocarpa based on targeted knockdowns of specific monolignol genes. Using in-silico simulations of this model and root mean square error, we showed that our model more accurately estimated transcript and protein abundances, in comparison to previous models, when individual and families of monolignol genes were perturbed. We leveraged insight from the inferred network structure obtained from our model to identify potential genes, including PtrHCT, PtrCAD, and Ptr4CL, involved in post-transcriptional and/or post-translational regulation. Our model provides a useful computational tool for exploring the cascaded impact of single and combinatorial modifications of monolignol specific genes on lignin and other wood properties.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32275650</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>e1007197</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1007197</ELocationID>
<Abstract>
<AbstractText>Accurate manipulation of metabolites in monolignol biosynthesis is a key step for controlling lignin content, structure, and other wood properties important to the bioenergy and biomaterial industries. A crucial component of this strategy is predicting how single and combinatorial knockdowns of monolignol specific gene transcripts influence the abundance of monolignol proteins, which are the driving mechanisms of monolignol biosynthesis. Computational models have been developed to estimate protein abundances from transcript perturbations of monolignol specific genes. The accuracy of these models, however, is hindered by their inability to capture indirect regulatory influences on other pathway genes. Here, we examine the manifestation of these indirect influences on transgenic transcript and protein abundances, identifying putative indirect regulatory influences that occur when one or more specific monolignol pathway genes are perturbed. We created a computational model using sparse maximum likelihood to estimate the resulting monolignol transcript and protein abundances in transgenic Populus trichocarpa based on targeted knockdowns of specific monolignol genes. Using in-silico simulations of this model and root mean square error, we showed that our model more accurately estimated transcript and protein abundances, in comparison to previous models, when individual and families of monolignol genes were perturbed. We leveraged insight from the inferred network structure obtained from our model to identify potential genes, including PtrHCT, PtrCAD, and Ptr4CL, involved in post-transcriptional and/or post-translational regulation. Our model provides a useful computational tool for exploring the cascaded impact of single and combinatorial modifications of monolignol specific genes on lignin and other wood properties.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matthews</LastName>
<ForeName>Megan L</ForeName>
<Initials>ML</Initials>
<Identifier Source="ORCID">0000-0002-5513-9320</Identifier>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jack P</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">0000-0002-5392-0076</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>Ronald</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0001-6819-7047</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
<Identifier Source="ORCID">0000-0002-7152-9601</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Cranos M</ForeName>
<Initials>CM</Initials>
<Identifier Source="ORCID">0000-0002-0477-9707</Identifier>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32275650</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1007197</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-19-00983</ArticleId>
<ArticleId IdType="pmc">PMC7147730</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2012 Jun 1;11(6):3390-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2010 Nov;228(1):78-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20816867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Apr 20;43(7):e47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):894-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(5):e1003068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23717196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Appl Stat. 2016 Jun;10(2):946-963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28367255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol (Tokyo). 2018;35(1):31-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31275035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010 Dec 02;6(12):e1001014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21152011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Oct 31;10:505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1346-1362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27699793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 21;9(8):e103997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2019 Mar;31(3):602-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30755461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Aug 20;457(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10486561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Sep 20;8:1564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29033955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Sep 19;11:253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30250505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Apr 30;148(3670):595-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17801928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Jan;8(1):176-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25578281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):601-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):557-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 2007 Feb;87(2-3):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EuPA Open Proteom. 2015 Jun;7:11-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25821719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2017 Jan;409(2):487-497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27491298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Sep 17;8:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26388938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Mar 13;13(4):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22411467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jan 15;27(2):238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Apr 20;9(1):1579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29679008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Feb;102(2):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18941472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26109572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biom J. 2009 Apr;51(2):304-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19358219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2016 Aug 01;12(8):e1005024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27479082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jan 16;9:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19149885</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Matthews, Megan L" sort="Matthews, Megan L" uniqKey="Matthews M" first="Megan L" last="Matthews">Megan L. Matthews</name>
</region>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Sederoff, Ronald" sort="Sederoff, Ronald" uniqKey="Sederoff R" first="Ronald" last="Sederoff">Ronald Sederoff</name>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<name sortKey="Williams, Cranos M" sort="Williams, Cranos M" uniqKey="Williams C" first="Cranos M" last="Williams">Cranos M. Williams</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
</noRegion>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000265 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000265 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32275650
   |texte=   Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32275650" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020